
A Parallel Approach for Multiprocessor Scheduling

Ishfaq Ahmad and Yu-Kwong Kwok

Department of Computer Science
The Hong Kong University of Science and Technology. Hong Kong

A bstrad
The objective of this research is to propose cl low-
c.omplexit)* static scheduling and allocation algorithm for
message-passing architectures bv c.on.sidering .factor.s
such as communicution delays, link contention, messcz
routing and network topology. As opposed to fi

r
t e

(onventiomzl list-scheduling ap rouch. our technique
\,rtork.s by ,first serializing the tas .f graph and “injecting”
~11 the tusks to nne processor: The parallel tasks are then
‘buhhled up ’ to other processors and are inserted at
uppropriutc time slots. The edges tmmg the tasks are
~liso .scheduled hi tr,eating c~3mmurric~1tion links between
the procrssors LI.Y resources. The proposed appmach rakes
into account the link c~3ntention and underlying
~~(~nlnlunication routing struteg); and can self-adjust on
rqgular o.s well LS arhitrtrr\j network tcq3ologies. To reduce
the cc3mi3lexit>. our schcdrding algorithm is itself
yr~r~zlleli:etl. To our knolr.ledge, this is the $r.st attempt in
designing u pamllel ~dgonthm fbr scheduling. The
pr~3pnsed q3proach implemented on Lm iPSC/%O
11~ pcrcuhe, while yielding u high sr3oedup in its exerutron,
~~~~r$3rrrr.s consider&!\’ better under a Mride runge of 
p~~rameters including the tusk graph .si;e, communicat~nn- 
to cr3mput~itintr t-&o, and the turget .syvstem topology. 
( ,. mlparisotis trre made \t,itti two nlh& izpproaches. 

1 Introduction 
Scheduling of parallel programs represented by 

directed acyclic graphs (l)A(;) is an NP-complete problem 
in its general forms 141. As a result, there has been a 
considerable research effort in designing efficient heuristic 
algorithms. Various heuristics using techniques such as list 
scheduling 161, 1x1, [ 1 I]. [12]. critical path methods [ I], 
[J 1, 181, 1 IO], clusterrng [S], 191, [I I], [ 141, etc.. have been 
proposed showing satisfactory performance. From a 
practical standpoint, houevcr, there are IWO fundamental 
ish,ues that need to be addressed: (i) does the heuristic make 
realistic assumption\ and is it sophisticated enough to 
cirpture the architectural details of the system’? and (ii) 
ck~es the complexity ot the heuristic permit it to be 
pi &cally used for scheduling large task graphs? 

The first question relates to the assumptions made by 
the scheduling algorithnl about the program tasks and 
architecture models. F.arlier scheduling heuristics [I]., 121, 
[ 71 made simplifying assumptions such as equal times for 
all the nodes in the task graph., and ignoring the 
c( lmmunication delays among tasks. The second question 
which is related to the complexity 01’ the heuristic is an 
iu,portant consideraticln. In order to be of practical USC, a 
s<,heduling algorithm must have IOU complexity. Most 
previous algorithms are evaluated hy applying them on 
ta*k graphs with :I small number of nodes. In practice, a 
scheduling algorithm may be required to schedule task 
gr,lphs with hundreds or thousands of’ nodes. Since most 

-- 

algorithms have complexity of O(Nj) to O(W), scheduling 
of graphs with a large number of nodes can take hours on 
a serial machine (for example, see Table 3 in Section 3). 

In this paper, we present an algorithm that uses realistic 
assumptions such as arbitrary communication and 
computation costs in the task graph, performs ,scheduling 
and mapping, and takes into account link contention and 
communication routing strategy. There have been a few 
algorithms which meet all of the scheduling and mapping 
objectives mentioned above. Two such reported 
algorithms are the MH (Mapping Heuristic) proposed in 
[ 31, and the DLS (Dynamic Level Scheduling) proposed in 
1131. 

The proposed algorithm can be used for any network 
topology and can adjust itself accordingly. The main 
feature of the proposed algorithm is that it is itself a 
parallel algorithm. 

2 The Proposed Approach 
For the purpose of presenting the philosophy behind it, 

we first describe its serial version which is based on a new 
technique that eventually leads to the parallel algorithm. 
2.1 The Serial Algorithm 

Before describing the serial BSA algorithm. we define 
some attributes and symbols which will be used in the 
subsequent discussion. 

A parallel program can be represented by a directed 
acyclic graph G = iv, EJ. where V is the set of nodes 
representing tasks and E is the set of edges representing 
communication messages (Iq = I’ and IEl = c ). 
Associated with each node II, is a number indicating the 
amount of computation required, denoted by w(ni). 
Associated with each edge is a number indicating the 
amount of communication data from one task to another, 
denoted by c,~. A node on the critical path is called Critical 
Path Node (UN). An In-Brunch node (IBN) is a node, 
which is not a CPN, and from which there is a path 
reaching a CPN. An Out-BrLmc,h Nc3de (OBN) is a node, 
which is neither a CPN nor an IBN. The communicuticrn- 
Irr-cL3N1PutLitiorf-rcitir3 (CCK) of a parallel program is 
defined as its average communication cost divided by its 
average computation cost on a given system. It node n, is 
scheduled to processor J, ST(n,, Jj and FT(n,, J) denote the 
start time and finish time oft?, on processor-J, respectively. 
It should be noted that FT(rr,, J) = ST(n,, J) + \I cn,). After 
all the nodes have been scheduled, the schedull: length is 
defined as ttrut-, ( FT (n!, 1) ) across all procexsors. The 
(loal of a scheduling algorithm is to minimize the schedule 
i‘ength for a given task graph. 

Some additional attributes used in the BSA algorithm 
are described below. 

l EMST: the earliest start time of a message on a link. 
This is computed for the message by scanning through 
the link to find the earliest idle time slot that can 
accommodate it. 

289 
1053.7133~15 $4.00 o 1995 IEEE 

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95) 
1063-7133/95 $10.00 © 1995 IEEE 



l DAT :  t he  ear l ies t  poss ib le  d a t a  ava i l ab le  t ime of  a  
n o d e .  Th is  is c o r n  

! 
u t e d  

the  m a x i m u m  E M  
for  t he  n o d e  by  de te rm in ing  

p a r e n t  n o d e .  
T a m o n g  al l  t he  m e s s a g e s  f rom its 

l ST:  t he  ear l ies t  oss ib le  start  t ime of  a  n o d e .  Th is  is 
c o m p u t e d  for  t e  n o d e  b  tak ing  the  l a rge r  va l ue  

g  Y  a m o n g  its D A T  a n d  the  e a r  iest l a r g e  e n o u g h  id le  t ime 
slot o n  the  p rocessor .  

l V IP :  t he  very impor tun t  pa ren t  o f  a  n o d e .  It is a  p a r e n t  
n o d e  that  s e n d s  the  d a t a  that  a r r ives  last. 

l Proc:  t he  p rocesso r  h o l d i n g  a  n o d e .  
Fo r  schedu l ing ,  w e  c a n  const ruct  a n  o r d e r  of  

schedu l i ng  n o d e s  in  wh i ch  the  C P N s  a lways  ge t  h i g h e r  
pr ior i t ies.  T h e  ra t iona le  is that  t he  C P N s  a r e  the  n o d e s  that  
potent ia l ly  d e t e r m i n e  the  f inal  s c h e d u l e  l eng th  a n d  s h o u l d  
b e  c o n s i d e r e d  for  schedu l i ng  first so  that  they  c a n  occupy  
ear l ie r  t ime slots in  the  p rocessors .  W e  cal l  this o r d e r i n g  
m e t h o d  the  CPN-f i rst  o rder ing .  It is d e s c r i b e d  be low .  

I) B e g i n n $  r  f rom the  en t r  n o d e  of  t he  CP,  cons ide r  
o n e  C P  at  a  t ime. If a l  t he  IB N s  r e a c h i n  v it h a v e  
b e e n  schedu led ,  s c h e d u l e  the  C P N  to + I t e  most  
su i tab le  p rocessor ;  o the rw ise  first s c h e d u l e  al l  t he  
IB N s  r e a c h i n  it. 

2 )  A fter al l  C P  4  s as  wel l  as  IB N s  a r e  cons ide red ,  t he  
O B N s  c a n  b e  s c h e d u l e d  in  topo log ica l  o rde r .  

T h e  B S A  a lgo r i thm is t h e n  fo ;ma l&ed  be low .  
T h e  B S A  Algor i thm:  
(  i)  L o a d  p rocessor  topo logy  a n d  input  task g raph  
(  2 )  Bu i ld~rocessorJ is t ( )  
(.j) Ser ia l - in jec t ion()  
(4)  wh i le  Processor_ l is t_no l ._empt-y  d o  
i “j P i vo t -TPE t first p rocessor  of  Processor - l i s r  
(0 )  for each  n i  o n  P i vo t -TPE d o  
(  “‘) If ST(n ,  , P ivot . . .TPE) >  DAT{n, ,  P & o f -TPE)  o r  

P roc (  V IP(n ,  J)  #  P ivot  - T P E  then 

i !3) 
i 14 )  
I ‘5)  

for each  ad jacent  p rocessor  T P E ’ d o  
De te rmine  DAT(n, ,  T P E  ‘) 
De te rmine  ST(n i ,  T P E  ‘) 

e n d  for 
if there exists T P E ’ .such rhar  ST(n ,  T P E ’) -=c  ST(n, .  
P i vo t -TPE)  a n d  migra t ing  n j  wi l l  not  de lay  the S T  of 
any  of  its succeed ing  C P N  then 

Migra te  n i  f rom P ivo t -TPE 1 0  T P E ’ 
Upda te  start  ttme,c  of  n o d e s  a n d  m e s s a g e s  

e lse  if ST(n, ,  T P E ’) L. ST(n i ,  P i vo t -TPE)  a n d  
Proc (V IP(nJ )  =  T P E ’ a n d  migra t ing  n, wd l  not  
de lay  the  S T  of  m y  of  its sue-c ted ing  ( IPN then 

116 )  Migra te  r+ f r om P ivo f -TPE IO  T P E ’ 
117 )  Upda te  .start tim e s  of n o d e s  r ind  m e s s a g e s  
l /c?) e n d  if 
i /9) e n d  if 
120 )  e n d  for 
(21)  e n d  wh i le  

T h e  B S A  a lgo r i thm const ructs  a  p rocesso r  list in  a  
breadth- f i rs t  o r d e r  f rom the  p rocesso r  h a v i n g  the  h ighes t  
d e g r e e  (i.e., t he  o n e  wi th  the  la rges t  n u m b e r  of  l inks).  Th is  
p rocesso r  is ca l led  the  P ivo t -TPE (p ivot  ta rge t  p rocessor ) .  
T h e  B S A  a lgo r i thm t h e n  const ructs  a  s c h e d u l e  
inc rementa l l y  by  first in jec t ing al l  t he  n o d e s  to the  p ivot  
p rocessor .  Then ,  it t r ies to i m p r o v e  the  start  t ime of  e a c h  
n o d e  ( h e n c e  “b u b b l i n g ” u p  n o d e s )  by  m ig ra t ing  it to  the  
ad jacen t  p rocesso rs  of  t he  p ivot  p rocesso r  if t he  m ig ra t ion  
c ,an  i m p r o v e  the  start  t ime of  t he  n o d e .  A fter a  n o d e  is 
m ig ra ted  f rom the  P ivo t -TPE to a n o t h e r  p rocessor ,  no t  
on ly  is the  n o d e  itself “b u b b l e d  u p ” bu t  its successors  is 
a l so  m o v e d  wi th  it. Th is  is b e c a u s e  af ter  a  n o d e  is 

m ig ra ted ,  t he  s p a c e  o c c u p i e d  by  it o n  the  P ivo t -TPE is 
r e l e a s e d  wh ich  c a n  b e  u s e d  for  its successor  n o d e s  o n  the  
Pivo t -TPE.  If a  n o d e  c a n  start  a t  its D A T  bu t  its V I P  is no t  
res iden t  o n  the  p ivot  p rocessor ,  it is still a  c a n d i d a t e  to b e  
t rans fer red .  Th is  is b e c a u s e  if it c a n  b e  t rans fe r red  to the  
p rocesso r  a c c o m m o d a t i n g  its VIP,  its start  t ime m a y  
fur ther  r educe .  A fter al l  t he  n o d e s  o n  the  p ivot  p rocesso r  
a r e  cons ide red ,  t he  a lgo r i thm selects the  nex t  p rocesso r  in  
the  p rocesso r  list to  b e  the  n e w  p ivot  p rocessor .  Th is  
p rocess  is r e p e a t e d  unt i l  a l l  t he  p rocesso rs  in  the  p rocesso r  
list h a v e  b e e n  cons ide red .  

T h e  t ime complex i ty  of  t he  B S A  a lgo r i thm is d e r i v e d  
as  fo l lows. Bui ldgrocessor- l is t0  takes  0  (p2)  t ime 
w h e r e a s  Ser ia l - in jec t ion{ )  takes  0  (v*) t ime. Thus ,  t he  
d o m i n a n t  s tep  is the  wh i le  l o o p  f rom s tep  (4 )  to  s tep  ( 2  I). 
In  this loop ,  it takes  0  (e )  t ime to c o m p u t e  the  S T a n d  D A T  
va lues  of  t he  n o d e  o n  e a c h  ad jacen t  p rocessor .  If m ig ra t ion  
is d o n e ,  it a l so  takes 0  (e )  t ime. S i n c e  t he re  a r e  0  ( 1 ’)  
n o d e s  o n  the  P ivo t -TPE a n d  0  (p )  ad jacen t  p rocessor ,  
e a c h  i tera t ion of  t he  wh i le  l o o p  takes 0  (pev)  t ime. Thus ,  
t he  B S A  a lgo r i thm takes 0  (p*ev)  t ime. 
2 .2  T h e  Para l le l  A lgor i thm 

In this sect ion,  w e  desc r i be  the  p r o p o s e d  Para l le l  B S A  
( P B S A )  a lgor i thm.  In the  fo l lowing,  w e  wil l  cal l  t he  
p rocesso rs  wh ich  execu te  the  P B S A  a lgo r i thm the  phys ica l  
p rocess ing  e lemen ts  ( P P E s )  in  o r d e r  to  d is t ingu ish  t h e m  
f rom the  ta rge t  p rocess ing  e lemen ts  (TPEs)  to wh i ch  the  
task g r a p h  is to  b e  schedu led .  

In  the  P B S A  a lgor i thm,  w e  first par t i t ion the  task g r a p h  
a c c o r d i n g  to the  n u m b e r  of  P P E s  ava i lab le .  Th is  is d o n e  
af ter  t he  ser ia l  in jec t ion p rocess .  E a c h  par t i t ion of  t he  task 
g r a p h  is t h e n  s c h e d u l e d  to the  ta rge t  sys tem independen t l y .  
A fter al l  t he  par t i t ions a r e  schedu led ,  t he  i n d e p e n d e n t l y  
d e v e l o p e d  schedu les  a r e  conca tena ted .  T h e  P B S A  
a lgo r i thm is wr i t ten in  a  h o s t - n o d e p r o g r a m m i n g  style. T h e  
hos t  P P E  is r espons ib le  for  al l  p r e - s c h e d u l i n g  a n d  pos t -  
schedu l i ng  h o u s e  k e e p i n g  work .  Th is  i nc ludes  the  ser ia l  
in jec t ion p rocess ,  t he  task g r a p h  par t i t ion ing  p rocess ,  t he  
conca tena t i on  of  par t ia l  s chedu les  a n d  reso lv ing  a n y  
confl icts in  par t ia l  schedu les .  Al l  o f  t he  para l le l  P P E s  
concur ren t l y  s c h e d u l e  the  par t i t ions of  t he  task g r a p h  
a s s i g n e d  to them.  

D u e  to the  d e p e n d e n c i e s  b e t w e e n  the  n o d e s  of  two  
ad jacen t  par t i t ions,  e a c h  P P E  n e e d s  the  in fo rmat ion  a b o u t  
such  d e p e n d e n c i e s  in  the  schedu l i ng  p rocess .  Fo r  examp le ,  
e a c h  n o d e  must  k n o w  the  f in ish t ime of  a  p a r e n t  n o d e  
b e l o n g i n g  to a n o t h e r  par t i t ion,  ca l led  the  rert iote pa ren t  
r z o d e  (RPN) ,  so  that  it c a n  d e t e r m i n e  its o w n  ear l ies t  start  
t ime. In  o r d e r  to  e n a b l e  al l  t he  n o d e s  in  d i f ferent  par t i t ions 
to k n o w  the  f in ish t imes of  the i r  RPNs .  a  g l oba l  
in fo rmat ion  e x c h a n g e  a m o n g  the  P P E s  ix requ i red ,  
Howeve r ,  this c a n  g e n e r a t e  excess ive  a m o u n t  of  
commun ica t i on  o v e r h e a d .  In  the  P B S A  a lgor i thm,  on ly  
es t imated  in fo rmat ion  is ava i l ab le  to e a c h  P P E  so  that  
i n t e r -PPE commun ica t i on  is min imized.  T h e s e  es t imates 
a r e  g i ven  in  the  fo l low ing  def in i t ions.  
Def in i t ion I.: T h e  ear l iest  poss ib le  start  t ime ( E P S T )  o f  a  
n o d e  is the  largest  s u m  of  compu ta t i on  costs f rom a n  en t ry  
n o d e  to the  n o d e  bu t  no t  i nc lud ing  the  n o d e  itself: 
Def in i t ion 2:  T h e  latest poss ib le  start t ime ( I -PST)  o f  a  
n o d e  is the  s u m  of  c a m  
the  ser ia l  in jec t ion  o r  8,  

M a r i o n  rusts f rom the  jirst n o d e  in  

r h e  n o d e  itself: 
e n n g  to the  n o d e  bu t  no t  i nc lud ing  

2 9 0  

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95) 
1063-7133/95 $10.00 © 1995 IEEE 



It is obvious that no node can start earlier than its 
EPST, and no node can be scheduled to start later than its 
L.PST. An RPN can be scheduled to start at any time 
between the two extremes. Thus, the problem is to pick an 
accurate estimate for a parent node’s start time from all 
values between the two extremes. Our approach is to take 
EPST for a parent node if it is a CPN; otherwise, the 
estimated start time will be EPST plus a fraction of the 
difference between LPST and EPST. The size of the 
fraction is determined by the relative importance of the 
parent node over a CPN. We formalize this in the 
following definition. 
Definition 3: The estimated start t ime (&ST) qf an RPN is 
given by aEPST + (1 -a) LPST, where c( is the 
un ortance factor an,d is equal to I ly the RPN is o CPN; 

R ot erwrse, it is equal to the len th 
an entry node throu h the RP 

s I4 

of the longest path from 

the length of the C 
to an exit node divided by 

. Here, length of a path is the sum of 
the computation and communication casts along the path. 

From the above definition, the importance,factor (x is 
always bounded above by I. We measure the relative 
importance of an RPN by examining the length of the 
longest path passing through it, which may consist of large 
communication costs, large computation costs or both. 
Such a long path can potentially determine the schedule 
length. Therefore. the nodes lying on it are likely to be 
scheduled to the same TPE and as a result, to be scheduled 
al their EPSTs. 

Given the estimated start time of an RPN. we still need 
to know on which TPE the RPN ih scheduled. This is 
essential in determining the DAT of a node to be scheduled 
and, in turn, in choosing the most suitable TPE for the 
node. To estimate it, if the RPN is a CPN, then we assume 
that it will be scheduled to the same TPE as the highest 
level CPN in the local partition; otherwise, we just 
randomly pick one TPE 10 be the one to which the RPN is 
scheduled. We call this TPE of an RPN the estimated TPE 
(IITPE). It should be noted that both EST and ETPE of any 
RPN can be statically determined by the host program after 
the graph partitioning process. Using the above methods to 
obtain the estimated information about the RPNs of a 
pltrtition, the node program of PBSA IS formalized below. 
PBSA-Node(): 
( i ) Receive the targel pro’ essor network from PBSA-HoJt(). 
(2) Receive graph parritinn together with rhe RPN> 

information (i.e.. estimated start t imes and TPh’s) ,from 
PBSA-Host(). 

(-0 Apply the serial BSA algorithm to thr graph partition. For 
every RPN, its EST and ETPE are useti,jor determining the 
DAT of a node to be scheduled in the local partition. 

(4 J Send the resulting .suhxhedulc to PIlSA-Host(). 
Suppose that there are m  nodes in the local partition of 

PBSA-Node(). As step (3) in PBSA-Node0 is the 
dominant step, the complexity of’ PBSA-Node0 is 
i) (p*e’m) , where (3’ is rhe number, of edges 111 the local 
partition. 

After all the PBSA-Node0 processes finish, the host 
program constructs the resulting schedule from all the sub- 
schedules by resolving the conflicts among them. 
Elssentially, the host program concatenates the one sub- 
schedule after another in such a way that the resulting 
schedule is as short as possible. Since the serial part of the 
PBSA algorithm should not dominate. two methods are 
used in the host program for the concatenation of sub- 

schedules. 
First, for every sub-schedule, the earliest node among 

all the TPEs is determined. Call this node the leader node 
and the TPE to which the leader node is scheduled the 
leader TPE. The leader node, together with all its 
succeeding nodes on the leader TPE, are concatenated to a 
TPE of the previous sub-schedule such that the start time 
of the leader node is as early as possible. Such TPE is 
called the leader TPE image. Then, the nodes on the 
neighboring TPEs of the leader TPE are concatenated to a 
neighbor TPE of the leader TPE image in the previous sub- 
schedule. This is done to all other remaining TPEs in a 
breadth-first order. In the concatenation process, nodes 
may need to be pushed down because of the scheduling of 
the inter-partition communication messages. 

Second, after a current sub-schedule is merged with the 
previous sub-schedule, all exit nodes in the current sub- 
schedule (i.e., the nodes with no successors in the current 
graph partition) are considered for re-scheduling. For 
every such exit node, all the TPEs are examined and the 
node will be re-scheduled to the one which allows the 
minimum start time. 

We formalize these methods in the following host 
program procedure Concat-Scheduleso. 

Concat-Schedules(): 
(I) for every pair of adjacent sub-schedu1e.s. do 
f-‘) Determine the earliest node in the latter sub-schedule. 

Call this the leader node. Call its TPE the leader TPE. 
(-‘I Concatenate all nodes, which are .scheduled on the Same 

TPE as the leuder node, to a TPE in the Jormer sub- 
schedule .so that the leader node cnn start as early as 
possible. 

(4) Concatenate the nodes on ull other TPEs to the TPEs of 
the former sub-schedule in a breadth-first order 
beginning from the neighbors of the leader TPE. 

(5) Re-schedule tht, exit nodes in the lallrr .suh+chedule .so 
that they can start as early as possible. 

(6) Walk through the whole concatenated schedule to resolve 
any conflict between the uctual start tim<J.s and the 
es&ated start r imes 

17) end for 
Suppose that there are at most m  nodes in every sub- 

schedule. The complexity of Conoat-Schedult,s() is then 
0 (Pm?) , where P  is the number of PPEs (i.e., the number 
of sub-schedules). This is because steps (2) and (5) take 
0 (m) time; while steps (3). (4) and (6) take 0 (NT*) time. 
With Concat-Schedules(), the PBSA algorithm can then 
be formalized below. 
PBSA-Ho&(): 
( I) Load procc~ssor network topology and input task graph. 
(-3) Seriul-injection0 
(3) Partition the task graph mto equal sized sets according to 

the number of PPEs available. Determine the, ESTs and 
ETPEs for c’very RPNs in all purtitlons. 

(4) Broadcast the processor network topoloyy to all 
PBSA-Nodtq). 

(5) Send the particular graph partition togethc’r with the 
correspondmg ESTY and ETPEs to each PBSA- Vode(). 

(6) W-zit until rrll PBSA-Node(),finish. 
(7) Concat_SrlledlcleJ(I 

If there are P PPEs, the maximum size ~1 of each 
partition will then be [v/PI. The dominant steps in 
PBSA-Host0 are steps (6) and (7). As described above. 
step (6) takes 0 (17:““) and step (7) takes 0 (I’mI) The 

291 

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95) 
1063-7133/95 $10.00 © 1995 IEEE 



complexity of PBSA-HII.F~(O is 0 (P~U’I?I + Pm2) 

3 Performance Results 
In this section, we present the experimental results and 

performance comparisons. We implemented both the BSA 
and PBSA algorithms as well as the MH [3] and the DLS 
algorithms [13]. The parallel PBSA algorithms was 
implemented on an iPSU860 hypercube at Syracuse 
Ilniversity. The three serial algorithms were also 
implemented on a single processor of the iPSU860. 

We first compared the performance of the BSA 
algorithm with the MH and DLS algorithms, and then 
compared the BSA and PBSA algorithms. Two 
performance parameters were used: ihe schedule length 
produced by the algorithm. and the running time of’ the 
algorithm. 

The workload for the testing purpose consisted 01 
random graphs of various sizes. We selected 3 values ot 
VCR which were 0.1, 1.0, and 10.0. The weights on the 
nodes and edges were generated randomly such that the 
;\verage value of CCR corresponded 10 0.1, 1 .O or 10.0. 

In our first experiment, we compared the schedules 
produced by the MH, DLS and BS.4 algorithms for ;I SOO- 
node random task graph. Eleven difterent target system 
topologies were selected reptesenting various 
combinations of processors and communication links. 
These results are shown in Table I for 3 different values of 
VCR. For each value 01’ CCR, there ;lre 3 columns. The 
t’irst column shows the ratios of the schedule lengths 
produced by the MH algorithm to those of the DLS 
algorithm, the second column shows the r,ltios of the 
schedule lengths produced by the BSA algorithm to those 
of the DLS algorithm, and the third column shows the 
ratios of the schedule lengths produced by the BSA 
;Ilgorithm to those of the MH algorithm. 

r0p010gy 
MH/  WA/ WA/ MH/ R%A %A/ MH/ L%Ai tBA/ 
L)LS 1:1l.S MH D1.S Cl1 S WH DLS LX 5 MH 

-- -- 
:‘ r 1 IO0 ,195 1194 0.92 0 90 I1 98 ,JYl iI 72 0.7h 
:i2 0% 11117 I173 0 a3 0 7tr 0 87 lilt! 1'91 0 Rh 

were only 6 cases in which BSA performed worst: than 
MH (these are indicated by the ratios greater than I). No 
case of BSA performing worse than DLS was observed. 
The schedule lengths produced by 13SA were about 60- 
70% of those of DI,S in most cases. DLS was shown 10 be 
in genera1 better than MH when CCK was low while MH 
performed better than DLS when CCR was high. The 
proposed BSA algorithm was better than both the MH and 
I)LS algorithms in general when CCR W:IS lows and in 
particular when CCR was high. 

Next. we considered relatively larger task graph\ by 
larying the number 01 nodes from 200 to 2000 with 

increments of 200. Here, two topologies were chosen: a 2 
by 2 mesh and a 4 by 4 mesh. The results provided in Table 
2 are the ratios of schedule lengths by MH to those of DLS, 
ratios of schedule lengths by BSA to those of DLS and 
ratios of schedule lengths by BSA to those of MH. As can 
be noticed from this table, there was no effect of task graph 
size on the relative performance of the three algorithms, 
and BSA is shown to be better than both the MH and DLS 
algorithms. 
‘Table 2: A  relative comparison of the schedule lengths produced by MH.  DLS and 
BSA algorithms for random ta\k graphs of various sizes on two topologies 

2 x 2 mesh 4x4mesh 

MH/  BSA/  BSA/  
DL’S  D1.S M H  

MH/BSA/  
DLS DLS MH 

0.93 (1.80 0.84 
U.RR Il.79 0.87 
Cl.87 0.78 U.87 
0.9L Lt.79 0.84 
IO.RX (I.HI) It.87 
oxx 079 il.87 
0.91 0 78 O.R4 
0.88 uxo 0.87 
11.89 il.79 0.85 
0.88 (1.78 fl.85 

0.8b 078 087 
0.87 0.79 088 
0.9:s 079 084 
O.bH 0.78 US5 
0.N 078 065 
0 X(1 078 OR7 
0.88 0 80 087 
0.v 080 OR4 
0.91 079 1185 
0.W 0.78 085 

For the same set of experitnents, the running times of 
the DLS, MH and BSA algorithms are provided in Table 
3. This table provides the exact times (in seconds) for 
running these serial algorithms on a single node of the 
iPSC/860 hypercube. As can be seen from this table, the 
running times of these algorithms approached thousands of 
seconds for large task graphs when the number of nodes 
was rnore than 800. The running times were also higher for 
4 by 4 mesh as cornpared to those of 2 by 2 mesh. The 
results indicate that MH was about 30%’ fastel than DLS, 
BSA was about 20% faster than DLS and rcrughly 40%’ 
slower than MH. 

2 I 2 mesh 

GraphsSue DLS M H  R5.4 

200 11.4 7 1 ‘J 3 
400 15x J y33 12b I 
600 222LI 125.0 171 2 

4 x 4 mesh 

DIS M H  I iSA 

Ii9 XI 11) 9 
IN.7 112.5 14b 1 
25x 2 153.3 -xl 7 

MU,  56 1 33x.u 42x2 3s b 373.5 4789 
I ml Ihl;'.: YOH.4 1244.4 1ss4: YXS.4 12474 
I?OlI 17ai 2 10744 14137 IX09 0 11131 7 14133 
,400 313'1.7 lRHX7 2452y 3316U 2122.2 2052fl 
I h00 hH34.V 44096 55120 71194 4340.x 5?115 

2 4 H lb 2 4 b Ib 
Graphs S,zr PI'Ec I'l'Es I'I'Ec PPEs PPf s I'PEs 1'1"~ c I'PES 

.- 
200 ,"8 11,) 1.11 I.16 107 I WI I()( 112 
400 110 II1 113 113 IO" III II, 1 12 
600 107 1.07 l.IiX 1.10 l.(W 1.11 II> 11.1 
800 109 112 1.15 I.17 I (IV 1.11 1 1 I13 
1000 107 I.UH I.1 I 1.12 1.c 1.07 IO,' I UY 
1200 lU6 to7 1.119 1 IO I 07 IOR 1,l.J I IO 
1400 ,116 f OS I.12 1.12 IOX I10 1 t/1 1 13 

2000 I.,)6 f 07 I.119 I II 111') 110 I I, 1 I4 

Next, we exatnine the performance of the proposed 
parallel PBSA algorithm by making a comparison with the 

292 

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95) 
1063-7133/95 $10.00 © 1995 IEEE 



HSA algorithm. The results shown in Table 4 are the ratios 
of the schedule lengths produced by the PBSA algorithm 
to the schedule lengths produced by the BSA algorithm. 
This was done by running the PBSA algorithm on 2, 4, 8 
and 16 processors on the iPSC/860 and taking ratios of the 
schedule lengths produced by it to those of BSA running 
on one processor. The slight deterioration in performance 
of PBSA is primarily due to the simple procedure of 
merging the partial schedules. However, it can be noticed 
that, in more than half of the cases, the schedule lengths 
produced by PBSA were within 10% of those produced by 
EGA. The topology of the target architecture did not seem 
tl) have any bearing on this observation. 

The performance of PBSA was also compared with 
MH and DLS, for which the results are not provided here 
due to lack of space. There was no single case in which 
PBSA performed worse than either MH or DLS. Using 
smaller number of PPEs, the schedule lengths generated by 
PBSA were roughly 90% of those produced by MH and 
about 80% of those produced by DLS. LJsing a larger 
number of PPEs, the schedule lengths produced by F’BSA 
slightly increased due to some inaccuracy in the global 
information exchange. 

The speedup in the running times of PBSA over USA 
using 2, 4, 8 and 16 processors with various sizes of task 
graphs are plotted in Figure I, when target topologies were 
2 by 2 mesh and 4 by 4 mesh, respectively. Note that these 
c;peedups were obtained by comparing the running times of 
parallel PBSA with the serial BSA and not comparing 
parallel PBSA with serial PBSA (by running it on one 
processor). The plots indicate that the parallel PBSA on 2 
processors was about 6 to 10 times faster than the serial 
[ISA. By using more PPEs, the speedup increased almost 
lmearly. With 16 PPf:s, the speedup was sometimes more 
than 50. Due to the availability of only 1 h-node hypercube, 
we could test our algorithm on at most 16 PPEs. But we 
expect the speedup to further increase on 32 and 64 PPEs. 

4 Conclusions 
We presented a scheduling approach that drastically 

reduces the running time of the algorithm through 
parallelization. Comparisons with two related algorithms 
indicated that our proposed serial and parallel algorithms 
perform better under a wide range of parameters. We have 
observed substantial speedup when the parallel algorithm 
is implemented on the iPSC/860 hypercube. Some 
degradation in the performance of PBSA as compared to 
the serial BSA is due to the estimation of the start t imes of 
njodes assigned to other PPEs. Further improvemenl: may 
he possible by dealing with this problem through better 
~tlformation exchange. 
Keferences 
1 ] T.L. Adam, K. Chandy, and J. Dickson. “A  Corn arison of 

List Scheduling for Parallel Processin 8 !+tems;’ 
~;;ndnunrcclfions of the ACM, vol. 17, pp. 85-6 0, Dec. 

[ 21 E.G. Coffman. Crlnlp”cer clnd Job-S/lop Sched~lin(~ Tl~uor), 
, -,, ‘$lelhNey York. 1976. 

ewml and T. Lewis, “Scheduling Parallel Programs 
onto Arbitrar Target Machines.” .lourna/ of faruilul und 
fk&.x4ted CT omprrtinq. vol. 9. no. 2, pp. 138-153. lun. 

[ok] M.R. Gary and D.S. Johnson, Computers andlntractah~lity. 
A  Guide to the Theor! of NP-Completeness, W.H. Freeman 
and Company, 1979. 

x 

x 1 

--III- II- 
200 400 600 BM) 

N!%b, .I Es 
1400 IMO rew 2c.m 

Figure I (Upper) The speedup in the running times of 
PBSA over BSA  for a 2 x 2 mesh target architecture; 
(lower) target architecture is a4 x 4 mesh. 

[S] A. Gerasoulis and T. Yang, “A  Comparison of Clustermg 
Heuristics for Scheduling DAG’s on multiprocessors, 
Journal o Parallel and Distributed Computing. vol. 16. no. 

d 4, p. 27 -291, Dec. 1992. 
[6] D.g. Hochbaum and D.B. Shmoys “Ilsing Dual 

A  proximation Algorithms for SchedLling Problems: 
T R eoretlcal and Practical Results,” Journul of‘ the ACM, 

144-162 Jan. 1987. 
171 %!!“ff~. “Paraliel Sequencing and Assembly Line 

Problems.” Oper Research. vol. 19. no. 6, pp. 841-848, 
Nov. 1961. 

[8] H. Kasahara and S. Narita. “Practical Multiprocessor 
Scheduling Algorithms for Efficient Parallel Processing,” 
/EEE Trans. on Computers. vol. C-33, pp. 102?- 1029, Nov. 
1984. 

[9] A.A. Khan. C.L. McCreary and M.S. Jones,“A  Comparison 
of Multiprocessor Scheduling Heuristics,” Proc. qf lJlt’/ 
($mr$ on Parallel Prowtsing, Aug. 1904, vol II. pp. 243- 

[ IO] W.H. Kohler, “A  Preliminary Evaluation of the Critical Path 
Method for Scheduling Tasks on Multiprocessor Systems.” 
{$YTf Trum. on Computer:,, vol. C-24. pp. 1215.1238, Dec. 

1 I I ] V. Sarkar, Partitronin and Scheduling Purull~~l Pro rams 
for Multiprocessor.s, dlT Press, Cambridge M  4 19[9. 

[ 121 B. Shirazi. M. Wang and G. Pathak, ‘“A&ysis and 
Evaluation of Heuristic Methods for Static Scheduling,” 
Journal of Parallel and Distributed Cornputin~, no. 10, pp. 
222-232, 1990. 

[ 131 G.C. Sih and E  A. Lee, “A  Compile-Time Scheduling 
Heuristic for Interconnection-Constrained Hetero eneous 
Processor Architectures,” IEEE Trans. on Pam lel and B  
Distributed Systems. vol. 4, no. 2. p 75-87, Feb. 1993. 

[ 141 T. Yang and A. Gerasoulis, “A  L ast Static Schedulin 
Algorithm for DAGs on a unbounded Number o $ 
Processors,” 
642, Nov. I9 $ 

roceedings 
I. 

of Supercomputing’(j/. pp. 6?3- 

293 

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95) 
1063-7133/95 $10.00 © 1995 IEEE 


